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ABSTRACT 

 
 This research first explores the integration issues in the implementation of 
Computer Integrated Manufacturing (CIM). A modern CIM environment contains major 
aspects of manufacturing enterprise systems, including product development and design, 
process planning, production planning and control, etc. In order to automate product 
design and manufacturing in modern manufacturing systems, the integration of Computer 
Aided Design (CAD) and Computer Aided Process Planning (CAPP) is an underlying 
issue. The development of a proper interface between engineering design and 
manufacturing planning stages is at the center of CAD/CAPP integration. The 
representation or modeling of product design data is further identified as a key element 
for the successful implementation of design-planning interface development.  Addressing 
the identified CIM integration issues, a new product design data model for the effective 
implementation of CIM is proposed. More precisely, this research adopts the object-
oriented, feature-based product design data representation for seamless interfaces 
between the product design and subsequent manufacturing planning phases in Computer 
Integrated Manufacturing (CIM) systems. 
 
Keywords: Computer Integrated Manufacturing, Computer Aided Design, 
Manufacturing enterprise systems integration, Automated part feature recognition and 
conversion 



Hybrid Feature-Object Based Part Design Data Modeling                                                                                  17 
 

 
 

INTRODUCTION 
 
 In essence, integrated manufacturing enterprise systems encompass a number of 
major functional areas: product development and design, process planning, material 
requirements planning, production planning and control, etc. Computer Integrated 
Manufacturing (CIM) involves the integration of those individual functional areas with 
the use of assorted computer-aided systems and enterprise-wide databases. Essentially, 
CIM can be conceived as a method or a philosophy of consolidating separate islands of 
automation of the entire production lifecycle into a computer-assisted distributed 
processing and control enterprise system (Groover, 2007). The part design and 
production data processed in a CIM system reveals a nature of heterogeneity and 
intricacy in terms of distributed information processing (Balakrishna et al., 2006). Hence, 
communication among different automation islands in CIM poses a major challenge 
without a uniform part design interface. Specifically, one important aspect of CIM 
integration deals with the communication between part design and subsequent process 
and production planning tasks (Zhou, 2007). Engineering drawings are the medium 
conventionally used by the product designers to communicate with manufacturing 
engineers. Nonetheless, these drawings may sometimes contain insufficient or 
unstructured data that cannot be directly used in subsequent process and production 
planning tasks (Shah & Mäntylä, 1995). Meyer et al. (2009) stressed the importance of 
manufacturing integration for streamlining the production process and presented the 
integration concept from CIM to the digital factory. They give emphasis to the use of 
integrated manufacturing execution systems tools for dynamic mapping and modeling to 
maximum process capability and manufacturing intelligence. As a result, a proper 
representation and data modeling of part design is considered one of the critical success 
factors for effective implementation of manufacturing enterprise systems integration.  
 Ismail et al. (2004) developed a rule-based algorithm for the extraction of 
cylindrical based features from a neutral data format, namely STEP (for the Exchange of 
Product Model Data) file produced by any Computer Aided Design (CAD) systems. They 
explored two primary approaches to feature-based modeling for CAD/CAM integration: 
design-by-features and feature recognition. With the method of design-by-features, part 
models are defined directly by adding, subtracting, or manipulating features created as 
instances of predefined feature types. The second approach, feature recognition, deals 
with computationally recognizing features from conventional geometric models or from 
neutral data format such as IGES, STEP. Ismail et al. (2004) asserted that this approach 
circumvents the constraints of design-by-features by specifying features from preset 
component descriptions. Cicirello and Regli (2001) explored the approach to using 
machining features as an index-retrieval mechanism for solid models. Specifically, 
machining features extraction is implemented by mapping the solid model to a set of 
STEP machining features. Bhandarkar and Ragi (2000) developed feature extraction 
system employing the STEP file as input to define the geometry and topology of a part 
and in turn created STEP output file for downstream activities such as process planning, 
production scheduling, and material requirement planning. Gao et al (2004) studied the 
conversion algorithm for coaxial hole-series machining feature extraction for gear box 
components as well as discussed the planar-type machining features and non-geometrical 
attribute features. Han et al. (2001) presented the research findings of integrating feature 
recognition and process planning in the machining domain for CAD/CAM integration.  
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Rosemann et al. (2009) used ontology to as a modeling tool for representational analysis 
of business processes. They suggested that there is no well-accepted reference 
frameworks used to evaluate and compare the capabilities of different process modeling 
or representation techniques. They further presented a comparative summary of previous 
representational analyses of process modeling techniques over time and made suggestions 
as to where ontology-based representational analyses stands in terms of its limitations and 
future development. Brahe and Bordbar (2009) developed a methodology to support 
semi-automatic transformation of high-level business process models into final 
executable systems with the use of a set of domain-specific modeling languages explicitly 
designed for a given enterprise.  
 Addressing the challenges of CIM design-planning integration issues, the 
primary objective of this research is to propose a new approach to the design of a uniform 
parts description and data modeling scheme for seamless integration of design and 
manufacturing planning. In this paper, two essential properties in an appropriate design 
data representation are identified: data conformity and data completeness. Most of the 
current generation of geometric modeling systems have their own data structures and 
geometric data models to represent geometric entities such as points, lines and other 
primitives.  However, in a multi-user environment, such as in a CIM environment, a 
uniform design data representation is imperative.  With regard to the issue of data 
conformity, a specially designed part description language, called Hybrid Feature-Object 
based Part Design Representation (HFO-PDR), is proposed in this research.  With the 
use of HFO-PDR, the inconsistency and redundancy problems in parts representation can 
be effectively resolved. The second prerequisite of a well-designed part data 
representation schema is the data completeness. The part design representation schema of 
most of the currently used geometric modeling systems do not include essential technical 
information, such as tolerance, surface-finish, and material conditions, and thus cannot 
properly drive process and production planning systems which depend on such 
information (Case, 1994). The proposed HFO-PDR attempts to include not only the 
geometry data but also such technical information.  In this way, a part can be described 
sufficiently; as a result, misinterpretation among separate production agents can be 
greatly eliminated.   
 
 

FRAMEWORK OF HFO-PDR 
 
 The proposed HFO-PDR is a hybrid data model incorporating conventional 
query processing, object-oriented database processing, and knowledge-based data 
processing capabilities for factual data and procedural knowledge manipulations (Lai, 
1988). This new data model will provide a dynamic, logical representation and 
organization of the real-world CIM objects (entities), constraints on the objects, and 
relationships among the objects. In other words, the proposed new data model is capable 
of supporting an object-oriented representation for part design representation and CIM 
factual data, such as engineering design, machining, tooling, and process capability data, 
as well as a rule-based representation for procedural knowledge manipulations and 
inferential reasoning processes (e.g., the reasoning process for automated machine cell 
design). With HFO-PDR, design and manufacturing data can be converted into practical 
knowledge. Consequently, a better system of decision-making for production 
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management is made possible by effectively using HFO-PDR based knowledge. 
 As a prerequisite, initial part representation schema should be properly selected 
for the design data from a specific CAD modeling tool (e.g., AutoCAD). Subsequently, 
different feature types are to be defined properly in terms of the initial part 
representation. The definition of OR-DBS comprises the following facets: 
 

1. Definition of CIM object schema 
2. Definition of CIM production rule schema  
3. Definition of integrated object/rule (OR) data model 
4. Use the proposed object-oriented data mode to represent part design data 

stored in the CAD system for use by the subsequent process planning task. 
  a) Composite 3-D block part design representation 
  b) Feature-based part design representation 
  c) Object-oriented part design representation 
 
Definition of CIM Object Schema 
 
 As mentioned above, HFO-PDR reflects the flexibility and strength inherent in 
object-oriented programming languages, knowledge based systems, and the relational 
database languages. In other words, HFO-PDR is consistent with message-passing 
paradigm of object-oriented systems and knowledge reasoning capabilities. In addition, 
the proposed data model holds the same features as those in conventional relational 
database systems: a data-definition language, data-manipulation language, and a data-
control language. For the design of HFO-PDR, the following core concepts of object-
oriented data modeling should be taken into consideration:  
 

• A CIM class describing the data structure and functionality of its instance. 
• A CIM class inheriting all the data structure and functionality declared in its 

superclass. 
• A CIM class specializing some of the data structure and functionality that are 

defined by its superclass. 
• A CIM class served as an abstract class that contains no instances to abstract 

common features of several of its subclasses. 
• Encapsulation combining data structure and functionality into its instances. (It 

hides internal aspects of objects from outside world and declares which features 
of an object are accessible.) 

 
 In summary, there are six principle steps of CIM object schema development:  
  

1. Identify CIM classes 
2. Define class attributes 
3. Define CIM class hierarchy 
4. Create objects (instances) from the defined CIM classes 
5. Object initialization 
6. Extend object representation 
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Step 1 – Identify CIM classes. A CIM system has a multiplicity of information (data and 
knowledge) requirements. In this research, the effort was made to classify CIM data and 
knowledge according to the system functional classification. Using the abstract data type 
concept, a CIM class represents a cluster or a collection of similar system objects that 
share same sets of design, planning, and/or other production attributes. An object is an 
instance of a class. The class incorporates the definition of the structure as well as 
operations of the abstract data types for CIM databases. A CIM system can be assorted 
into different levels of classes, such as part class, part family class, component class, part 
feature class, material class, machine class, tool class, and process class. The basic format 
of CIM classes is shown as follows: 
 
 1.  Class name 
 2. Private, public, and protected features. 

a) Internal representation (Int-Rep): used to describe the structure and 
properties of the group of similar objects and provide unique 
values for each instance of a class. 

   where 
    Int-Rep := <data member list> and  
    data member  (instance variables ) := attribute_name + attribute_type 

b) External operators (E-Op) (methods): used to manipulate the 
instances (objects)  of the class.  

    E-Op := <function member list> <target object><argument1, argument2, ...>  
 
 Three example defined function members are shown as below: 
   GetProcessPlan():  Get the process plan report for a given part. 
   GetProductName(): Get the name of the given product. 
   GetBOM(): Get the bill of material report for a given part or product. 
    
 Member functions are the "methods" or procedures used to describe the behavior 
of the collected CIM objects, such as the invocation of knowledge sources, inferential 
reasoning, application program execution, or read/write database. The selector of a 
message selects the appropriate inferencing method from the methods associated with the 
target object. Selector can be a forward chaining, a backward chaining, or other 
inferencing strategies. In C++ computer programming language, the public interface is 
made up from the features that are listed after public keyword while the keyword 
protected is used for the second interface. The following shows three CIM class examples 
coded in C++: 
 

class Part { 
 char *part_name;  // name of the part 
 char *part_number;  // part number 
public: 
 void setName (char *newName) {  // member function 
 name = newPartName; 
 } ; 
 void GetProcessPlan() 

 void print() { 
 printf("The part name is: %s  \n",part_name) ; 
 } ; 
} ; 
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class PartFamily { / 
 char *pf_number ;  // part family number as string 
 char *pf_description ;  // part family description slot as string 
 Part  *parts[52] // array of parts in class 
public : 
 Part *part ; // part of the class 
 void initialize(char *n, char *t) { 
  number = n ; 
  time = t ; 
 } ; 
}; 
class ProcssPlan { 
 Char *surface_type ; 
 Char *process ; 
 Char *sub_proc ; 
 Char *cutting_tool ; 
public: 
 void AddOp() ; 
 void print() { 
 printf ("Surface type: %s \n", surface_type) ; 
 printf ("Process: %s \n", process) ; 
 printf ("Sub process: %s \n", sub_proc) ; 
 printf ("Cutting tool: %s \n", cutting_tool) ; 
 } ;  
} ; 

 
Step 2.  Define the CIM class attributes. An attribute is a characteristic which is 
associated with an object or a class.  Each attribute possess a value, say attribute type. An 
individual object attributes is called a slot. Each object can possess one or more 
properties. The following shows the basic attribute expression: 
 
 <attribute name:attribute type> 
 where attribute type: integer, real, string, date, boolean  
 
Example:  
 
 (Part(part_name:#string) 
  (part_number:#string) 
  (material:#string)) 

 
Step 3.  Define CIM Class Hierarchy. The following presents a hierarchical data 
representation by the class concept for CIM: 
 
 CLASSi:{Pi} 
  SUBCLASSi1:{Pi1} 
   OBJECTi11:{Pi11} 
    SUBOBJECTi111:{Pi111} 
    SUBOBJECTi112:{Pi112} 
    ...  
   OBJECTi12:{Pi12} 
    SUBOBJECTi121:{Pi121} 
    SUBOBJECTi122:{Pi122} 
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    ... 
   SUBCLASSi2:{Pi2} 
  ... 
 CLASSj:{Pj} 
 ... 
 
 Where X:{P} - class (subclass, object, or subobject) X possesses a set of properties P. 
 
  {Pi}    = {pi1,pi2,...,pim} 
  {Pi1}   = {pi11,pi12,...,pi1n} 
  {Pi11}  = {pi111,pi112,...,pi11o} 
  {Pi111} = {pi1111,pi1112,...,pi111q} 
  {Pi112} = {pi1121,pi1122,...,pi112r} 
  {Pi12}  = {pi121,pi122,...,pi12s}  
  {Pi121} = {pi1211,pi1212,...,pi121t} 
  {Pi122} = {pi1221,pi1222,...,pi122u} 
  {Pj}    = {pj1,pj2,...,pjv} 
 
  im ≤ i1n ≤ i11o ≤ i111q  
  im ≤ i1n ≤ i11o ≤ i112r  
  im ≤ i1n ≤ i12s ≤ i121t 
  im ≤ i1n ≤ i12s ≤ i122u     
 
 To illustrate the class hierarchical structure, the following shows an example of 
two selected part classes for a part database of 60 sample parts that are grouped into 11 
part families using the clustering algorithm. 
 
 part{part_name, part_number, material, heat_treatment} 
 
  part_family_001:{rotational, bolt_screw_stud} 
   part_001:{G4, E2, E22, E25, E32, E34} 
   part_004:{G4, E2, E26} 
   part_006:{G4, E2, E22, E25, E32} 
   part_008:{G4, E2, E25} 
   part_011:{G4, E2, E26} 
   part_013:{G4, E2, E22, E25, E32} 
   part_020:{G4, E2, E25} 
   part_024:{G4, E2, E25} 
   part_027:{G4, E2, E22, E25, E32} 
   part_030:{G4, E2, E22, E25, E32} 
   part_037:{G4, E2, E25} 
   part_038:{G4, E2, E26} 
   part_042:{G4, E2, E25} 
   part_045:{G4, E2, E25} 
   part_049:{G4, E2, E25} 
   part_052:{G4, E2, E25} 
   part_053:{G4, E2, E11, E26} 
   part_057:{G4, E2, E25} 
   part_060:{G4, E2, E25} 
  
  part_family_002:{rotational, bolt_w_nut} 
   part_016:{G4, E3, E11, E26} 
   part_047:{G4, E3, E11, E26} 
   part_056:{G4, E3, E5, E26} 
  
 Where G1 - G9: General shape features  
   E1 - E35: External MP features  
   I1 - I15: Internal MP features  
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   H1 - H15: Hole features  
 
 Two types of class hierarchies are defined in the CIM system: single inheritance 
and multiple-inheritance. The sequence to define inheritance is to define the upper-level 
class and then the associated subclasses. These two types of inheritances are defined in 
C++ code. 
 
 class part_family_001{  
  char *pf_number;  
  char *pf_description ;   
  Part  *parts[20]  
 public : 
  Part *part ;  
  void initialize(char *n, char *t) { 
   number = n ; 
   time = t ; 
  } ; 
 }; 
 
 // Single inheritance 
 class part_001: public part_family_001 { 
  . . . 
 } ; 
 
 class part_042: public part_family_001 { 
  . . . } ; 
 
 // Multiple inheritance 
 class part_016: public part, public part_family_002 { 
  . . . 
 } ; 
 
Step 4.  Create objects (instances) from the Defined CIM classes. An object represents 
any entity involved in the CIM system.  Objects (or entities) include tangible objects such 
as parts, products, materials, machines, tools, fixtures, facilities, reports, and documents 
as well as intangible objects like systems, databases, functions/processes, operations, 
cost, processing time, etc.  An object also represents knowledge of product design and 
production planning being reasoned on by the production rules. In this paper, two 
methods are used to create objects from the defined classes. The first method is referred 
to as Static Allocation where object variables are defined by using class name as their 
type while the second method, Dynamic Allocation allocates the instances of classes 
dynamically during run-time instead of compile time by applying the C++ "new" 
operator.  The "new" operator allocates enough memory to hold the newly created 
instance object and returns a pointer to the new instance object of the class. 
   
Step 5.  Object initialization. Constructor operator is used to initiate the objects. When an 
instance of a CIM class is created, constructors are automatically invoked. Constructors 
are function members of a class that have the same name as the class. Message passing is 
then applied in the main program for the invocation of a function member of an object. 
The statement is read as "sending the message FunctionMemberY to the object 
ObjectVarX". The main program here is served a message sender and ObjectVarX is the 
message receiver. 
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Step 6 Extend Object Representation. Three basic object-oriented semantic modeling 
concepts have been identified (Booch et al., 2007; Farrel, 2008): object-class: instance-of 
relationship; object-class: inheritance; and superclass-class-subclass: generalization 
relationship (IS-A relationship). In this research, the other two extended semantic data 
modeling concepts are extended for the special data processing requirements in CIM 
applications: Composite Object (Ma, 2005). This concept depicts a heterogeneous set of 
objects which form a data hierarchy. In other words, a composite object is collection of 
component objects from a number of different CIM classes. This is especially useful in 
representing any given part (part components, finished products, etc.) which may be 
composed of a number of subassemblies and each subassembly can further contain 
another set of subassemblies or subcomponents. From the data modeling point of view, 
this schema is effective in manipulating the proposed feature-based part definition 
language discussed in later chapter. The composite object reveals A-PART-OF 
relationship which is superimposed on the aggregation relationship between an object 
(e.g., assembly) and other objects it references (e.g., subassembly). 
 
CIM Object Processing Strategies Determination 
   
 There are a number of algorithms used in this research for the control of CIM 
class/object processing: single inheritance and multiple inheritance, abstract data type, 
encapsulation, attribute-pattern matching, data recouping by inheritance, and object 
identity. First, three steps are involved for inheritance control: inheritance priority setup, 
inheritability setup, and inheritance strategy determination. Through inheritance, new 
classes are built on top of an existing less specialized hierarchy of classes, instead of 
redesigning everything from scratch. The new class can inherit both the structure 
(instance variables) and the behavior (functions, methods) from existing classes. From a 
modeling point of view, inheritance is a very natural and powerful way for information 
organization (Parsaye, 1989; Parsaye and Chignell, 1993). As a summary, the way to 
determine the inheritance priority value is conducted as follows: 
 

Algorithm: {Inheritance Priority Determination} 
begin 
 case 1 
  If the inheritance slot has a value 
  then use the value as the inheritance priority. 
 case 2 
  If the inheritance slot does not have a value (or hasn't been declared) but an 

inheritance number has been declared 
  then use the number as the inheritance priority. 
 case 3 
  If the inheritance slot does not have a value (or hasn't been declared) and the 

inheritance number has not been declared 
  then use 0.1 as the default value. 
end 

 
 In addition to setting inheritance priorities which determine how the slot will 
compete with other slots when the children or parent level want to inherit from it, the 
inheritability meta-slot also determines whether or not a slot can be inherited from at all.  
 

Algorithm {Object Inheritability} 
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input: object-X{property-set-X: prop[X]}, object-Y{property-set-Y: prop[Y]} 
notation: X  Y: X inherit the property from Y 
  X ⊗ Y: X does not inherit the property from Y 
  X ← y: X inherit a value y from the object Y 
  X ≠ y:X does not inherit a value y from the object Y 
begin 
 if object-Y is_a subobject of object-X and 
 property-set-X = property-set-Y and 
 prop(N,X)  ← v   // the value property N of the object-X is v 
 prop(M,Y) ← u   
 then  
  prop(N,Y) ← v   //object-Y inherit a value from object-X 
 and 
 prop(M,X) ≠ u// The parent object object-X does not inherit a value from  object-Y 
 and 
  prop(X,-) ⊗ prop(Y,-)  //do not inherit a property up to a parent 
 and 
  prop(Y,-) ⊗ prop(X,-) //do not inherit a property down to a subobject 
end 

 
Example: To elucidate the object inheritability, assume that: 
 
 part_family_002 = object-X  
 part_047 = object-Y  
  
 If N = G4 and M = E11, then 
 prop(N,X) =  prop(G4, part_family_002) ← 1 and  
 prop(M,Y) = prop(E11, part_047) ← 1  
 
 where 1 stands for the presence of the feature N or M.  
 
 Hence 
  

(i) prop(N,Y) = prop(G4, part_047) ← 1 (part_047 inherit the value of G4 
from part_family_002) 

(ii) prop(M,X) = prop(E11, part_family_002) ≠  1 (part_family_002 does not 
inherit the value of E11 from part_047) 

 
 Encapsulation is one of the most beneficial concepts in object-oriented systems.  
Encapsulation combines data structure and functionality into objects.  It also hides two 
internal aspects of objects from the system users and declares which features of an object 
are accessible: internal data structure and internal functionality. In other words, 
encapsulation keeps all the CIM static knowledge or data pertaining to the special design, 
planning or manufacturing application entity bundled together with all the functionality 
that applied to it.   
 To access a given CIM object, two ways are provided by sending messages: (a) 
from a client (another CIM object that sends out a message) and (b) from an heir (from 
the object's subobject). The class structure itself acts as a pointer to a set of objects, with 
data held by the property associated with each object. CIM classes thereby provide a way 
to search through lists of objects in order to identify which objects meet a specific rule 
condition. This is called attribute-pattern matching which is depicted as follows: 
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Algorithm: {Attribute Pattern Matching} 
input: conditionI, I = 1,2,...,N 
 actionJ, J = 1,2,...,M 
 conditionX := <operator><objectα.attribute_><valueγ> (X ∈ {1,2,..,N}) 
 actionY :=  <operator><objectα.attributeΔ><valueδ) (Y ∈ {1,2,..,M}) 
begin 
  // run rule_evaluation 
   do while I <= N  
    evaluate conditionI 
    if conditionI = .false. then  
     exit the program  // the rule is verified as false 
    end_if 
    next I 
   end_do_while  
    do while J <= M 
     execute actionJ 
    (when J = Y then a message is sent from the conditionX and invoke all 

classes with objectα; actionJ is then applied to all the invoked objects) 
     next J 
    end_do_while 
end 
 
Example: Consider the following rule condition: 
  
 (is parts.rm_feature shafting) 
 

which reads, "Are there any objects in the class 'parts' whose property 
'rm_feature' (raw material feature) has the value 'shafting'?" This example 
illustrates an attribute-pattern matching condition. Objects in class "parts" all 
have the attribute "shafting".   

  
 To execute the rules evaluation, the system must have the appropriate data on 
which to base its conclusions. In some cases, if the values of slot incorporated in rule IF-
BLOCK conditions are unknown, the system must first recoup the values to complete the 
evaluation. The proposed system supports two mechanisms to choose the desired data 
from related sources. Taking the following example for illustration, consider the 
following condition and assume that there is no current value for the attribute 
"material.k" 
 
 (is   part_1.material   modeled-ABS) 
 

which means, "Does the attribute 'material' of  the single object 'part1' have the 
value 'modeled-ABS'?" At this point, does the system find an answer? Assume 
that there is a value for the attribute "attribute1" at the level of the class (parts) 
to which the object (part_1) belongs. By using the inheritance method, the value 
of the object's attribute can be inherited from the class to which the object 
belongs.  
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 Another powerful object control strategy is object identity (Khoshafian and 
Copeland, 1986).  An entity is a handle which distinguishes one entity from the other.  In 
the proposed system, every object in the CIM system is assigned an identity that will be 
permanently associated with the object, no matter how the object's structural or state 
transitions are changed.  And the identity will be maintained across multiple CIM 
application programs or transaction instantiation. Methods used in this research to 
identify the CIM objects are: 
 
 1.  Using meta variable which contains a complete object.  
  Format: ClassName ObjectName;  
  such as Part  part_001 ; (this declaration in C++ creates a part_001 object.   
   Variable part_001 is declared to contain the complete part object. 
 
 2.  Using pointers to present external identification for identifying the object's 

addressability  
  Format: ClassName *pointer ; 
  Example: 
  Part *part_pointer; 
  part_pointer = new Part ; // create a new object 
  part_pointer -> function1() ;  // send 
 
Integrated Object-Rule Representation for CIM Procedural Knowledge 
 
 To represent reasoning procedures, the OO-EDS adopts production rules (Luger, 
2008). Production rules are knowledge structures which let the system perform certain 
inferential search operations, such as backward or forward chaining, etc. along reasoning 
paths. In brief, a production rule is a chunk of CIM knowledge representing a situation 
and its immediate consequences. In this research, the basic format of a rule is represented 
as the following LISP-liked expression: 
 
 rule ( 
  (RuleNumber RuleDescription) 
  (if (ConditionList)) 
  (then (Hypothesis)) 
  (execute (ActionsList)) 
 ) 
 
 where 
 
  ConditionList := ((Cond1)(Cond2)(Cond3)...) 
  Cond1 := [<Operator> <ClassName.AttributeName> <Value>] 
  [<Operator> <ObjectName.AttributeName> <Value>] 
  ActionList := ((Action1)(Action2)(Action3)... 
 

which means 
 
"IF statement is followed by a set of conditions,  then statement is followed by a 
HYPOTHESIS or goal which becomes true when the conditions are satisfied, and 
EXECUTE by a set of actions to be undertaken as a result of a positive evaluation of 
the rule (the conditions). " 
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 CIM knowledge is further classified into different groups, such as the Process 
Planning Knowledge Source: 
 
 • Rules of machining processes selection 
 • Rules of machine tools selection 
 • Rules of tooling selection 
 • Rules of fixtures selection 
 • Rules of operation sequencing determination 
 • Rules of cutting conditions 
 • Rules of standard time 
 • Rules of cost consumption 
 • Rules of stock determination 
 
 Based on the normalization rules, relational database files are generated through 
the Relational DB Transformer, including Feature Database: Part DB, Feature DB, 
Operation DB, Machine Tool DB, etc. The following steps illustrate how those databases 
are generated as well as their interrelationships: 
 

1) Data of the first portion of the HFO-PDR, part_heading information, are 
extracted and stored in the PART database (partial structure).    

2) Feature data in the second portion of HFO-PDR are then converted to Binary 
Feature Code (BFC) according to the presence or absence of the features.  BFC 
is the binary variable representation describes parts with binary coordinates 
based on the presence or absence of certain part feature, where value 1 stands 
for the presence of the feature while value 0 represents the absence of the 
feature. A complete PART database will contain both heading information and 
the BFC. 

3) BFC is then used as a key express to link the PART database and the FEATURE 
database. 

4) Next comes the determination of necessary operations required for each feature. 
Through the Manufacturing Process Expert System (MPES), sets of operations 
are identified for relative features. The following shows a set of selected 
example rules of MPES for selection of necessary operation, cutting tool, 
machine for a sample part based on the hole feature: 

 
  rule ( 
   (R301 mp_hole ) 
   (if (is <part.feature> drill)) 
   (then (hole)) 
   (execute  
    ( set <operation> drilling) 
    (set <cutting_tool> drill) 
    (set <machine> drill press))) 
  rule ( 
   (R101 mp_external ) 
   (if (is <part.feature> cylinder)) 
   (then (external_manufacturing_process)) 
   (execute  
    ( set <operation>  turning) 
    (set <cutting_tool> round_nose_turning_tool) 
    (set <machine> lathe))) 



Hybrid Feature-Object Based Part Design Data Modeling                                                                                  29 
 

 
 

  rule ( 
   (R122 mp_external ) 
   (if (is <part.feature> neck_round)) 
   (then (external_manufacturing_process)) 
   (execute  
    ( set <operation>  turning) 
    (set <cutting_tool> cut_off_tool) 
    (set <machine> lathe))) 
  rule ( 
   (R125 mp_external ) 
   (if (is <part.feature> thread)) 
   (then (external_manufacturing_process)) 
   (execute  
    ( set <operation>  turning_threading) 
    (set <cutting_tool> threading_tool) 
    (set <machine> lathe))) 
   

5) By linking the FEATURE database and the OPERATION database with the key 
expression "OP_ID", we can find detailed information about each set of 
necessary operations, such as the operation description, required machine ID 
number, tool number, and standard time. 

6) Similarly, detailed machine tool information is found using the key expression 
“Machine_ID” that links the pointer from the OPERATION database to the 
MACHINE TOOL database. 

 
CONCLUSIONS 

 
One of the prerequisites for engineering design-production planning integration is 

automated process planning. Without effective design-planning communications, a 
genuine integrated manufacturing enterprise system can hardly become a reality. 
Specifically, to achieve seamless integration, an interface is indispensible between 
computer aided design (CAD) systems and other computer-based planning and control 
systems, such as computer aided process planning (CAPP) and production planning 
systems. To achieve seamless integration between product design and manufacturing 
planning, the part/product design data should be properly converted into useful 
production-related knowledge for the subsequent planning and manufacturing tasks. This 
paper presents one of the foremost dimensions of integration: CIM data and knowledge 
integration. This dimension of integration involves the design of the HFO-PDR by 
developing a new form of feature-based data model which incorporate conventional 
database systems as well as object-oriented and knowledge-based data processing 
capabilities for factual data and procedural knowledge manipulations. Serving as a 
uniform part representation schemata for a more efficient integration tool, HFO-PDR can 
be transformed into different heterogeneous data modes (such as relational data mode, 
network data mode, object-oriented data mode, etc.) used in a number of individual 
production agents (e.g., sales/marketing module, inventory management module, material 
requirements planning module, machine cell design, etc.) in CIM. With HFO-PDR, 
inconsistency problems in parts representation can be avoided.  A modern manufacturing 
facility varies more and more from the traditional manufacturing facility.  Moreover, 
subjective decisions in describe parts can also be avoidable.  In addition, a part can be 
described sufficiently by this scheme.  Therefore, mistakes and misinterpretation among 
separate production agents can be greatly eliminated.  With all these capabilities, an 
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effective CIM implementation can be easily accomplished by greater integration and 
management of manufacturing information throughout the whole production life cycle. 
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