
Regression: Uses and Abuses                                                                                                                                47 
 

  

 
Regression: Uses and Abuses 

 
Syed Shahabuddin 

Department of Management 
Central Michigan University, Mount Pleasant, Michigan 

shaha1s@cmich.edu 
 
 

ABSTRACT 
 

Regression is a critical tool for establishing cause and effect relationships that could 
have many implications for business, economics, and society. For accuracy, regression 
results must be tested for autocorrelation, multicollinearity, and heteroscedasticity. The 
presence of any of them makes the outcome biased and/or inefficient. Unfortunately, 
many analysts do not know the rules, ignore the rules, or implement them partially. 
Consequently, their results are inaccurate. This paper shows how these violations affect 
results. Many models in which one or all of the violations is present were analyzed. Each 
model was regressed and results were tested for the presence of the violation, and the 
equation was then tested for bias and inefficiency.  
 
Key words: regression, multicollinearity, autocorrelation, heteroscedasticity, significance 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



48                                                                                                                                                      S. Shahabuddin 
 

 

INTRODUCTION 
 

Many researchers use regression analysis to study relationships between or among 
variables. According to Ezekiel and Fox (1966), “relations are fundamental stuff out of 
which all science is built” (p. 65).  Many researchers cannot prove or disapprove their 
hypotheses without establishing some type of cause and effect relationship between or 
among variables, where one variable may be considered to be affecting one or more other 
variables. This relationship is described in a functional form indicating that there is an 
expected relationship between the variables, but it does not specify what that relationship 
is. In many scientific experiments, relationships can easily be tested and confirmed. 
However, in many social and economic studies, relationships are not clearly evident and 
cannot be easily established. Thus, using statistics to establish relationships, if any, and 
then to confirm this relationship is very critical. A common method for establishing 
relationships is to determine the average relation between or among variables. 

To establish an average relationship, one must select carefully which is (are) the 
cause(s)—i.e., the independent variable(s)—affecting the dependent variable. Once 
appropriate cause and effect variables are selected, then relationships must be established. 
For establishing a relationship, a regression method is commonly used. Regression is 
based on the concept of “least squares.”  To run a regression analysis, one can use the 
least squares method while making sure that all the required conditions of regression are 
met. If the conditions are met, the estimated parameters will be the best linear unbiased 
estimate (BLUE) of the regression parameters. BLUE means that the estimates of linear 
relationships have the smallest variance. The method is based on a theory that the 
regression line should have the smallest sum of squared errors from actual observation 
(data). In addition, if the data have a normal distribution, the estimates will also have a 
normal distribution. However, for correct results of least squares, one must have a precise 
measurement of the independent variables and must not have outliers. After estimating 
the trend line, one must answer the following questions:  

 
1.  How close is the relationship?  
2.  How far is the trend value from the true value of the population from which 

the sample is drawn?  
3.  Do the estimates satisfy all the conditions of regression analysis? 
 

The measure of the relationship is the correlation coefficient, which is a measure of 
the covariability between or among variables. The correlation coefficient (r) measures the 
extent of the relationship between variables. The correlation coefficient only measures 
linear relationships. Therefore, if a variable has a strong non-linear relationship, it will 
not show a high correlation. In case of multiple variables or a single variable, the overall 
relationship is commonly measured by the Coefficient of Determination – R2, which 
indicates the extent of the effect on the dependent variable(s) by the independent 
variable(s).  A further test to measure how far the true value of the observation is from 
the trend value (Y) requires determining the extent to which each observation is dispersed 
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in the overall distribution. This dispersion is measured by sigma (σest), the standard error 
of estimate.  

The regression should give the best estimates of the parameters. Once estimated, 
they give residuals, ei, estimators of εi, the error term. The residuals indicate how much of 
the dependent variable is not explained by the independent variable(s). The sum of 
squares of the residuals gets smaller by adding additional variables; however, that does 
not mean that regression results improve. Cornbleet and Gochman (1979) suggested that 
"for the least-squares model to be valid, these residuals should be random and have a 
Gaussian distribution with a mean of zero and a standard deviation of one" (p. 434). They 
also suggest that standard deviation of the residual should be constant at every value of 
Xi, and repeated measurements of Y would have a standard deviation of Sy.x. The true 
regression estimate requires the inclusion of all the appropriate variables. Omitting some 
relevant variables may introduce a specification bias. When a variable is omitted, a part 
of the explanation is captured by the remaining variable(s). If the omitted variable is 
highly correlated with another independent variable(s), the extent of bias of its coefficient 
will be larger; otherwise, no bias exists. 

However, the true regression estimate with irrelevant variables increases the variance 
of the estimate of all coefficients. That is, even though it does not introduce bias in the 
regression coefficient, it does reduce the precision of the estimate.  A better estimator of 
relationship is the residual variance, which need not decrease with each additional 
variable as the degree of freedom increases with each additional variable. A regression 
equation with smaller residual variance will also have a smaller variance of the error of 
prediction. 

To assess the precision of the estimators of regression, standard errors of the 
regression coefficient(s) must be calculated. The common measure of precision is the 
variance of coefficient (CV). The smaller the variance, the higher the precision. Precision 
also depends on the co-movement of the independent variables, i.e., the less correlated 
independent variables are with each other, the higher the precision of the regression 
estimates. To determine the extent of the relationship, a t-test is used to test the 
significance of each independent variable. The t-test shows whether the dependent and 
the independent variables are linearly related. That is, if the t-test is significant, one 
cannot reject the hypothesis that the dependent and independent are linearly related. 

A good regression estimate requires that successive error terms, εi, are independent 
of each other and are not correlated with any independent variable. As a result, error 
terms are assumed to be uncorrelated with the independent variable(s).  Failure of this 
requirement means autocorrelation or serial correlation. Serially-correlated error terms 
have several consequences (Neter et al., 1983):  

 
 regression coefficients are inefficient; 
 mean squared error underestimates the variance of the error terms, as a 

result, the F may be inflated; and 
 the standard deviation of the coefficients may be underestimated.  

 
Autocorrelation is common in much of the economic and business research. To 

detect autocorrelation, one can use many tests, but the most widely used is Durbin-
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Watson (D) test, which tests the hypothesis of whether correlation between error terms 
exists or not. There are many reasons for autocorrelation to exist (Koutsoyiannis, 1973):  
 

 omitted independent variables,  
 misspecification of model,  
 data that are based on time, and  
 random causes.  

 
According to Koutsoyiannis (1973), “the source of autocorrelation has a strong 

bearing on the solution which must be adopted for the ‘correction’ of the incidences of 
serial correlation” (p. 197). 

A crucial requirement of regression estimates is that independent variables must not 
be highly correlated with each other. If they are, then they have multicollinearity. In most 
economic studies, some degree of intercorrelation among independent variables is 
expected due to the interdependence of many economic variables over time. However, 
high multicollinearity impairs the accuracy and stability of the estimates.  
Multicollinearity may be caused by variables that move together over time. Also, by 
including a variable both as a lag and unlagged will also result in multicollinearity. It is 
well known that time series may have multicollinearity, but cross-sectional data can have 
it, too. The effect of multicollinearity on the estimate depends on its severity and the 
importance of the collinear variable. Greater collinearity increases standard error. Many 
methods are available to test for multicollinearity.  Farrar and Glauber (1967) suggested 
the chi-square test for detection, the F-test for locating a collinear variable, and t-test for 
finding the pattern of collinearity. Carvalho and Cruze (1996) stated that "A high 
correlation coefficient indicates multicollinearity. However, when the total number of 
independent variables is greater than two, this condition become only sufficient, but not 
necessary, and absence of high correlation between two variables does not indicate 
absence of multicollinearity" (p. 480). To test for this type of multicollinearity, 
Marquardt (1970) advised using the variance inflation factor (VIF) (p. 600). Neter et al. 
(1983) state that "if VIF is greater than 10, it is possible that the minimum squares 
regression coefficients associated with such values are highly affected by 
multicollinearity" (p. 340).  Associated with each VIF is a tolerance statistic, which can 
be also used to test multicollinearity. Klein (1962) suggested that if tolerances are less 
than (1-R2), multicollinearity exits. Belsley et al. (1980) and Silvey (1969) suggested 
using eigenvalues. Also, Belsley et al. (1980) stated that "The analysis of the eigenvalues 
can identify the approximate nature of the linear dependency that exists between the 
variable" (p. 292).  They suggest that an eigenvalue close to zero indicates perfect 
collinearity, and a small value indicates severe multicollinearity. Klein (1962) 
recommended using R2 for significance of multicollinearity, and noted that if VIF is 
greater than 1/ (1-R2) or if the tolerance value is less than (1 - R2), and then 
multicollinearity exists.  Montgomery and Peck (1981) suggested using the condition 
number for determining multicollinearity. The condition number is the ratio of the 
highest eigenvalue and the smallest eigenvalue, and the condition index is the square root 
of the condition number.  Belsley (1991) suggested that a condition index within a range 
of 10 to 30 indicates possible problems of multicollinearity, and a greater value indicates 
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multicollinearity. Montgomery and Peck (1981) provided the criteria shown in Table 1 
for the condition number (CN) to measure multicollinearity.  

 
 

Table 1: Conditions of Multicollinearity 
 

Condition Number Existence of Multicollinearity 
CN < 100 None 
100 < CN <1,000 Moderate to Strong 
1000 < CN Severe 

 
In regression models, the error term is assumed to be the same for all X’s as well as 

their variances. In other words, if the error terms or variances are constant, the 
relationship is homoscedastic; otherwise, it is heteroscedastic. Heteroscedasticity can 
result from an extreme value among independent variables, error of measurement, or 
misspecification of variables, either dependent, independent, or both. Regardless of the 
reasons, heteroscedasticity results in biased estimators and biased standard errors. 
However, unless heteroscedasticity is severe, the estimates can be used without serious 
distortion. 

Many tests are available for detecting heteroscedasticity. The most common are 
listed below: 
 

 Visual inspection can be done by plotting the residuals against fitted values and 
detecting uneven behavior in the plot.  

 When errors are normally distributed, the White's test works well with the linear 
relationship between the dependent variable and error variance. White’s test 
requires that squared errors must be regressed with all the independent variables, 
with the squared of the independent variable and with the cross product of the 
independent variables, and then nR2  must be calculated. After calculating the 
White test, it is compared with chi-square. If the nR2 > chi-square, then 
heteroscedasticity exists. 

 The Breush-Pagan/Cook-Weisberg test is very similar to the White test except 
that the researcher selects the variables to be included in the equation. It tests 
whether error variances are equal. A chi-square test is used to determine 
heteroscedasticity. The test requires that the chi-square > RSS/2 to accept 
homoscedasticity.  

 Goldfeld-Quant (G) test is a bit simpler and tests whether the error variance 
between subgroups of the data is the same. After calculating the G value (ratio 
of variance of the second group with variance of the first group), compare it 
with the F value. If G > F, heteroscedasticity exists; otherwise not. The 
Goldfield-Quant test requires that the ratio of the variances of the second group 
to the variance of first group must be less than the F. However, the division of 
data into subgroups requires that data must have some unique characteristics 
allowing differentiation of data, e.g. gender, race, etc. 
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A regression results must satisfy the aforementioned requirements to produce useful, 
statistically acceptable results. Unfortunately, many authors use few or none of these tests 
to support their claims about their results, and many editors and referees accept articles 
without requiring rigorous testing. The problem has been summarized by Gill (1990), 
who stated that authors and editors tended "to avoid the hard work of matching 
appropriate statistical procedures to the specific objectives and characteristics of each 
project."  Gill (1990) also blamed the researchers, reviewers, and editors: "too many 
researchers blithely ignore the obvious structure inherent in their experiment, and fall into 
the inferential traps of ambiguity and inefficiency" (p. 191).The situation today seems not 
to have changed since1990.  

Testing closeness, accuracy, and precision requires statistical analysis. The use of the 
type of statistical analysis depends on the frequency distribution that determines whether 
to use parametric or nonparametric statistics (Konings, 1982, p. 371). Classical regression 
analysis and related tests require data that are normally distributed, but non-parametric 
tests can be applied to both normal and non-normal data. Most evaluation methods for 
analyzing data should be subjected to the F-test, t-test, least squares analysis, and 
calculation of correlation coefficients. However, for statistically-acceptable results, the 
analysis of the data should be subjected to more comprehensive tests. The purpose of this 
paper is to show how to analyze data using regression. The paper will show the 
consequences of accepting results that do not meet each requirement.  A variety of 
simulated data have been created for each condition and results analyzed to show 
consequences of failing to meet each requirement. The regression requirements are 
evaluated for small samples as well as large samples. The first data set from a small 
sample satisfies all the requirements.  
 

Model One 
 

A set of six normally-distributed independent variables was created which were then 
added to generate the dependent variable. The data consisted of 50 observations.  The 
range of standard deviations among the independent variables is between 1.5 and 7.69 
with their means between 19.72 and 70.46. 
 
Significance of the Equation and Multicollinearity 
 

To analyze Model One, SPSS was used to regress the data.  To test the significance 
of the regression coefficient of each variable, a t-value was generated. The regression 
coefficients and their t values are listed below (Table 2). Each coefficient has a 
significant t value indicating that each variable is significant and contributes to the 
explanation of the dependent variable. It also indicates that the standard errors are small, 
resulting in high, significant t-values. 

Just because the coefficients of equation have passed the t-test, this does not imply 
that one should accept the results. Further testing is needed. The next test that an equation 
should be subjected to is the test for collinearity. The suggested tests for collinearity are 
the Pearson correlation coefficients, the VIF, condition index, condition number, and 
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eigenvalues.  A commonly used test for determining multicollinearity is the Pearson 
correlation coefficient between independent variables. Table 3 shows all the SPSS-
generated Pearson correlation coefficients. 
 
Table 2: Regression Coefficients and Variance Inflation Factor (VIF) for Model One 
 

Unstandardized 
Coefficients 

t 

Collinearity    Statistics 

 B Tolerance VIF 

X1 1.046 11.591 .833 1.200 

X2 .968 21.219 .841 1.188 

X3 1.012 27.150 .911 1.097 

X4 .961 37.139 .908 1.101 

X5 1.029 44.310 .779 1.284 

X6 .998 57.172 .874 1.144 
 

 
The higher the correlation coefficient (plus or minus closer to one), the more serious 

is the collinearity. On the other hand, the smaller  the correlation coefficient, the less 
serious is the collinearity. As Table 3 indicates, the largest correlation coefficient number 
among the independent variables is -.38, indicating no or a very small correlation among 
the independent variables. If there are more than two independent variables, the 
correlation coefficient test is necessary but not sufficient for detecting multicollinearity, 
and additional tests must be applied. The tolerance and VIF tests, and Eigenvalue and 
condition index or condition number are the other required tests.  A VIF greater than 10 
indicates multicollinearity and the tolerance less than (1-R2) indicates multicollinearity. 
Using R2  in Table 5 (1-R2) results in .005. All the tolerance values in Table 2 are greater 
than .005, indicating no multicollinearity.  The VIF values are less than 10, also 
indicating no multicollinearity. Additional tests using an Eigenvalue close to or above 1 
and a condition index number of less than 100 are applied. Table 4 shows both 
eigenvalues and condition indices meeting the requirements, thus indicating no 
multicollinearity 

Since the equation passed the two major tests, i.e., of significance and 
multicollearity, the equation should next be tested for its overall significance. The 
significance tests commonly used are the R2 and F. In this case, the R2 =.995 and F= 
1,301 of the analysis are shown in Table 5. Both R2 and F indicate a "good" equation. 

Table 6 (the ANOVA) indicates a very small mean squared error and a high F value. 
These results also show a significant equation. 
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Table 3:Pearson Correlations for Model One                                                
 

 Y X1 X2 X3 X4 X5 X6 

Y 1.000       

X1 .010 1.000      

X2 .061 .237 1.000     

X3 .062 .037 .005 1.000    

X4 .410 -.001 -.215 -.067 1.000   

X5 .476 -.380 -.278 -.060 -.076 1.000  

X6 .735 .013 .024 -.293 .132 .129 1.000 
 

Table 4: Collinearity Diagnostics for Model One 
 

 Eigenvalue 
Condition 

Index 

Coeff. 6.950 1.000 

X1 .015 21.507 

X2 .012 24.140 

X3 .011 24.955 

X4 .006 34.593 

X5 .005 38.373 

X6 .001 89.799 
 

Table 5: Additional Tests of Significance for Model One 
 

             
R2 F 

Durbin-
Watson 

.995 1,301.152 1.810 
 

Table 6:  ANOVA for Model One 
 

 Sum of Squares df Mean Squared F 

Regression 6,040.111 6 1,006.685 1,301.152 

Error 33.269 43 .774  

Total 6,073.380 49   
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Autocorrelation of Model One 
 

Despite the fact the equation passed the three tests, however, the equation must also 
meet the requirement that the random error terms are uncorrelated. If not, they are 
autocorrelated or serially correlated. To test for autocorrelation, the Durbin-Watson (D) 
test is generally used. The result of regression significance in Table 5 indicates D 50, 5 = 
1.81, which is greater than the upper limit of the Durbin-Watson value for D50, 4, .01 of 
1.55. That means there is no autocorrelation.  
 
Heteroscedasticity of Model One 
 

The final test each regression should meet is that the error variances should be 
homoscedastic (homogeneous). If not, then the regression is heteroscedastic. For 
determining heteroscedasticity in Model One, the White, Breush-Pagan, and Goldfeld-
Quant tests were applied.  
 

 The White test requires that squared errors should be regressed with all 
independent variables, the square and the cross products of the independent 
variables, and then nR2   should be calculated. The analysis indicates that the 
nR2, which is 32, is less than 40.1, the chi-square at 27 degrees of freedom and 
95 percent,  resulting in the rejection of heteroscedasticity. 

 The Breush-Pagan test requires that, to accept homoscedasticity, chi-square 
must be less than RSS/2. The result indicates that chi-square, which is 1.15, is 
greater than 0/2, the RSS/2, again resulting in the rejection of heteroscedasticity. 

 The Goldfield-Quant test requires that the ratio of the variances of the second 
group with the variance of first group must be less than the F. The result 
indicates the ratio of variances is 1.15, which is less than the F value of 4.20, 
resulting in the rejection of heteroscedasticity. 
 

Based on all the tests, the analysis proves that the equation meets all the 
requirements of the regression method. 
 

MODEL TWO 
 

A set of seven normally distributed independent variables was created and then 
added to generate the dependent variable. The data consisted of 408 observations. The 
range of the standard deviations of the independent variables is between 2.15 and 7.77 
with their means between 20 and 80. 
 
Significance of the Equation and Multicollinearity for Model Two 
 

To analyze Model Two, SPSS was used to regress the data.  To test the significance 
of the regression coefficients of each variable, a t-value was generated. The regression 
coefficients and their t values are listed below (Table 7). Each coefficient has a 
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significant t value, indicating that each variable is significant and contributes to the 
explanation of the dependent variable. It also indicates that the standard errors are small, 
resulting in high, significant t-values. 

 
 

 Table 7: Regression Coefficients and Variance Inflation Factor (VIF)  
for Model Two 

 

 Unstandardized 
Coefficients   

Collinearity 
Statistics 

Collinearity 
Statistics 

 

B  t  Tolerance  VIF 

(Constant)  4.225  3.21     

X1  .998  43.56  .988  1.012 

X2  1.01  63.18  .986  1.015 

X3  1.01  78.07  .990  1.011 

X4  .994  100  .970  1.031 

X5  1.01  121  .955  1.048 

X6  1.000  139  .991  1.009 

X7  .996  153  .971  1.030 
  

Just because the coefficients of the equation passed the t-tests, that does not imply 
that one should accept the results. The next test an equation should be subjected to is the 
test for multicollinearity using the Pearson correlation coefficients, the VIF, the tolerance, 
condition index, condition number, and eigenvalues. Table 7 shows VIF and tolerance 
values for each independent variable. Each VIF is close to one, indicating no or little 
multicollinearity. Using the tolerance test, the Model Two has R2 = .992, resulting in 1-
.992 = .008. Since all of the tolerances are greater than .008, no multicollinearity exists. 
The second test for determining multicollinearity is the Pearson correlation coefficient 
between independent variables. Table 8 shows all the SPSS-generated Pearson 
correlation coefficients. 
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Table 8: Pearson Correlations for Model Two 
 

 Y X1 X2 X3 X4 X5 X6 X7 

Y 1.000        

X1 .128 1.000       

X2 .150 -.074 1.000      

X3 .200 -.002 .051 1.000     

X4 .418 .035 -.004 -.072 1.000    

X5 .502 .037 -.089 -.035 .134 1.000   

X6 .499 .013 -.015 -.016 .078 -.029 1.000  

X7 .559 -.071 -.043 -.058 -.011 .130 .027 1.000 
 

  
As Table 8 indicates, the largest correlation coefficient number among the 

independent variables is .134, indicating no or a very small correlation among the 
independent variables. Since there are more than two independent variables, additional 
tests for testing multicollinearity must be applied, i.e., the eigenvalues, condition numbers 
or condition indices. An eigenvalue close to or above 1 indicates no collinearity. Table 9 
summarizes eigenvalues and the condition indices; based on the rules discussed 
previously, multicollinearity is not a serious problem, because the equation passed the 
multicollinearity test based on the VIF, tolerance, Pearson correlation coefficients, 
eigenvalues and condition indices.  
 

Table 9: Collinearity Diagnostics for Model Two 
 

 Eigenvalue 
Condition 

Index 

Coeff. 7.941 1.000 

X1 .012 25.878 

X2 .011 26.680 

X3 .010 28.724 

X4 .009 29.313 

X5 .008 30.774 

X6 .007 33.253 

X7 .001 82.286 

 



58                                                                                                                                                      S. Shahabuddin 
 

 

Because the equation passed the two major tests for the significance and 
multicollinearity, the equation should then be tested for its overall significance. The 
significance tests commonly used are the R2 and F. The R2 =.992 and F= 12330 of the 
analysis are shown in Table 10. Both R2 and F indicate a "good" equation. Therefore, the 
tests also worked with a large sample size. 
 

Table 10: Additional Tests of Significance for Model Two 
 

R2 F Durbin-Watson 

.995 12,330 2.285 

 
The ANOVA, Table 11, shows a small mean squared error and a high F value. Both 

indicate a significant equation. 
 

Table 11: ANOVA 
 

 Sum of 
Squares df 

Mean 
Squared F 

Regression 81,620 7 11,660 12,330 

Error 3,726 400 .946  

Total 81,998 407   

 
 
Autocorrelation of Model Two 
 

Despite the fact that the equation passed the three tests,  it must also meet the 
requirement that the random error terms should be uncorrelated. If not, they are 
autocorrelated or serially correlated. To test for autocorrelation, the Durbin-Watson (D) 
test is generally used. The result of regression in Table 10 indicates D 400, 4 = 2.285, 
which is greater than the upper limit of the Durbin-Watson value for D400, 4, .01 of 1.78, 
which means there is no autocorrelation. 
 
Heteroscedasticity of Model Two 
 

The final test of Model Two is heteroscedasticity. The White, Breush-Pagan, and 
Goldfeld-Quant tests were applied.  
 

 The White test requires that the squared errors of the regression should be 
regressed with all the independent, the square of the independent variables, and 
the cross product of the independent variables, and the results should be 
compared with chi-square. If the nR2  is less than chi-square, then 
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heteroscedasticity exits; otherwise not. The analysis of the data indicates that, in 
this case, the nR2is 35,  less than 49.8, which is the chi-squared at 35 degrees of 
freedom with 95 percent, thus resulting in rejection of heteroscedasticity. 

 The Breush-Pagan test requires that to accept homoscedasticity, the chi-square 
must be less than  RSS/2. The result indicates that the chi-square, 51.74, is 
greater than the RSS/2, 0/2, thus, resulting in rejection of heteroscedasticity. 

 The Goldfield-Quant test requires that the ratio of the variances of the second 
group with the first group must be less than the F. The result indicates the ratio 
of variances is 1.07, which is less than the F value of 1.40, thus resulting in 
rejection of heteroscedasticity. 

 
Therefore, all the tests of the analysis prove the equation meets all the requirements of 
regression. 

The previous models (small and large sample sizes) show what regression results 
should be when there are no violations of the regression rules. The next section shows the 
results of regression where violations exist. 
 

MODEL THREE WITH MULTICOLLINEARITY 
 

The data in the previous model were modified to create multicollinearity.  That is, Y 
was created with some independent variables that were highly correlated. As shown in 
Table 12, X7 and X8 (.96) show a high correlation, and X1 shows a significance 
correlation with X8. 
 
Table 12: Coefficient Correlations 
 

 Y X1 X2 X3 X4 X5 X6 X7 X8 

Y 1.000         

X1 .132 1.000        

X2 .147 -.052 1.000       

X3 .203 .001 .045 1.000      

X4 .414 .041 .001 -.067 1.000     

X5 .500 .040 -.090 -.031 .130 1.000    

X6 .497 .012 -.010 -.018 .076 -.030 1.000   

X7 .556 -.072 -.049 -.060 -.019 .129 .025 1.000  

X8 .581 .201 -.066 -.056 -.009 .134 .029 .960 1.000 
 

T he t-values in Table 13 decreased for some variables. For example, the t-values for 
X1 dropped from 43.56 to 1.93 and the values for  X7 dropped from 153 to 2.16. The 
coefficients for both X1 and X7 also dropped, from .998 to .233, and from .998 to .255. 
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However, all the other t-values also changed but not by much. Other values such as VIF 
for X1 increased from 1.012 to 17.41 and X7 increased from 1.03 to 213.78. The variable 
X8, which is highly correlated with X7, has a VIF of 221.71.  

The tolerance of X1 dropped from .988 to .057 and of X7 dropped from .971 to .005. 
The variables which were not correlated showed no or little change in both the VIF and 
the tolerance values. Since the tolerances of X7 and X8 dropped below .007 (1-R2), they 
indicate multicollinearity.  

The condition indices in Table 14 show that X7 increased from 82.29 to 86.52 and  
X8 is 754.74; the other indices did not change. The eigenvalues and the condition indices 
of the other variables did not change much. These measures can easily identify 
multicollinearity.  
 

Table 13: Coefficients for Model Three 
 

                         Unstandardized                Collinearity     
                              Coefficients                      Statistics         

                             B t Tolerance VIF 
Constant 3.950 2.37   
X1 .233 1.934 .057   17.412 
X2 .992 49.10 .982     1.018 
X3 1.026 62.14 .989     1.011 
X4 .998 78.97 .969     1.032 
X5 1.013 96.18 .952     1.051 
X6 .999 109.83 .991     1.009 
X7 .255 2.16 .005 213.785 
X8 .745 6.33 .005 221.452 

 
 

Table 14: Collinearity Diagnostics for Model Three 

 Eigenvalue   Condition Index 
Coeff.                  8.937 1.000 
X1 0.014 25.536 
X2 0.012 27.798 
X3 0.011 29.075 
X4 0.009 30.855 
X5 0.009 31.676 
X6 0.008 34.432 
X7 0.001 86.951 
X8 0 753.925 

 
The other statistics (Table 15) indicate that the R-squared decreased (from .995 to 

.993) with the additional variable X8. The F decreased from 12,330 to 6,720. 
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Table 15: Additional Tests of Significance for Model Three 

 
R2 F Durbin-Watson 

.993 6,720 2.116 

 
 
Autocorrelation of Model Three 
 

The Durbin-Watson value of 2.116 compared with 1.78 indicates no autocorrelation. 
Table 16 is the ANOVA, which shows MSR, MSE, and the F. All of them decreased 
compared to the results in Table 11. 
 
 

Table 16: ANOVA for Model Three 
 

 Sum of Squares df Mean Square F 

Regression 81716 8 10,210 6,720 

Error 606 399 1.520  

Total 82322 407   

 
 

Heteroscedasticity of Model Three 
 

The final test of the model with multicollinearity is heteroscedasticity. The tests used 
for determining heteroscedasticity have been discussed previously. The Goldfeld-Quandt 
test indicates GQ = .69/.50 = 1.38, which is greater than F = 1.35 value and indicates no 
heteroscedasticity. The White test shows nR2 is 32.96. The chi-square with 38 degrees of 
freedom and 95 percent confidence is 54. Since nR2 is less than chi-square, 
homoscedasticity is indicated. Therefore, the model shows no heteroscedasticity. 
 
 

MODEL FOUR WITH AUTOCORRELATION 
 

For Model Four, the data for the Model Two (original model) were modified to add 
autocorrelated error. A new dependent variable was created that includes autocorrelated 
error.  The Pearson correlation (Table 17) shows no correlation among variables. The t 
values of all the coefficients (Table 18) decreased by a large number due to higher 
standard error. The collinearity statistics in Table 18 (tolerance and VIF) did not change 
at all.  The eigenvalue and condition indices (Table 19) did not change. The R2 , the F, 
and the Durbin-Watson (Table 19) statistics all decreased. The R2 decreased from .995 in  
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Model Two to .683, the F decreased from 12,330 to 123, and Durbin-Watson decreased 
from 2.285 to .04. Obviously, Durbin-Watson does prove the existence of 
autocorrelation. 
 
 

Table 17: Correlation Matrix for Model Four 
 

 Y X1 X2 X3 X4 X5 X6 X7 

Y 1.000        

X1 .081 1.000       

X2 .136 -.054 1.000      

X3 .177 .001 .046 1.000     

X4 .323 .040 -.001 -.067 1.000    

X5 .410 .039 -.092 -.030 .130 1.000   

X6 .417 .013 -.009 -.019 .077 -.030 1.000  

X7 .472 -.071 -.046 -.061 -.017 .130 .024 1.000 
 
 

Table 18: Coefficients and Other Statistics for Model Four 
 

 B            t Tolerance VIF 

(Constant) -25.853 -1.852   

X1 .808 3.311 .988 1.012 

X2 1.122 6.610 .986 1.015 

X3 1.133 8.171 .990 1.011 

X4 .993 9.353 .970 1.031 

X5 1.071 12.113 .955 1.048 

X6 1.085 14.202 .991 1.009 

X7 1.088 15.786 .971 1.030 
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Table 19: Collinearity Diagnostics for Model Four 
 

 

 

 

 

 
                                 
                                                                  
 
 

  
 

 
 

Table 20: Test of Significance for Model Four 
 

 
 
 

 
 

The effect of autocorrelation, however, discussed previously that the regression 
coefficients are inefficient proved to be true. The t-values in Table 18 versus Table 7 are 
lower due to higher standard errors, and the mean squared errors in Table 21 versus Table 
6 went up.  
 
 

Table 21: ANOVA for Model Four 
 

 Sum of Squares df Mean Squared F 

Regression 92,892.369 7 13,270.338 123.380 

Error 43,022.798 400 107.557  

Total 135,915.167 407   

 
Only the White test was used to test for heteroscedasticity. The R2 of the regressing 
residuals squared of 408 observations was .069. The nR2  then is 28.15. Comparing it with 
Chi-Square of 40.10 at 27 degrees of freedom and 95 percent acceptance proves that 
there is no heteroscedasticity. 

              Eigenvalue Condition Index

Coeff.              7.940                           7.941

1 .012 1.000

2 .011 25.980

3 .010 26.700

4 .009 28.703

5 .008 29.334

6 .007 30.625

7 .001 33.256

2 F  Durbin-Watson
.683 123.380 .040 
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MODEL FIVE WITH HETEROSCEDASTICITY 
 

The data for the Model Two without multicollinearity was modified to add 
heteroscedasticity. That is, errors with variable variances were created and added to the 
dependent variable.  The Pearson correlation (Table 22) shows no correlation among the 
independent variables. The coefficients of the equation (Table 23 vs. Table 7) increased, 
and the t values of the coefficients (Table 23) decreased due to higher standard error. The 
collinearity statistics in Table 23 (Tolerance and VIF) did not change much.  The R2 , the 
F, and the Durbin-Watson (Table 25) statistics all decreased. The R2 decreased from .99 
in the Model Two to .697, the F decreased from 12,330 to 123, and Durbin-Watson 
decreased from 2.285 to .785. 
 

Table 22: Pearson Correlations for Model Five 
 

                 Y  X1  X2 X3 X4 X5 X6 X7 

Y  1.000               

X1  .096  1.000             

X2  .143  ‐.053  1.000          

X3  .183  .005  .050 1.000        

X4  .328  .041  ‐.002 ‐.064 1.000      

X5  .380  .037  ‐.095 ‐.032 .128 1.000    

X6  .486  .013  ‐.007 ‐.019 .078 ‐.029 1.000  

X7  .429  ‐.072  ‐.045 ‐.064 ‐.017 .133 .022 1.000 

                 
Table 23: Coefficients and Other Statistics for Model Five 

 

  B           t  Tolerance VIF 

(Constant)  ‐839.608 ‐18.656    

X1  2.993 3.805 .988 1.012

X2  3.758 6.853 .985 1.015

X3  3.802 8.512 .989 1.011

X4  3.287 9.595 .971 1.030

X5  3.313 11.611 .954 1.048

X6  4.192 16.986 .991 1.009

X7  3.271 14.694 .970 1.031
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Obviously, Durbin-Watson does prove the existence of autocorrelation. The 

coefficients of the equations (Table 7 vs. Table 23) went up, t-values went down, and the 
mean squared error went up (Table 11 vs. 26). Only the White test of heteroscedasticity 
was used to test for heteroscedasticity. The R2 of regressing the residuals squared of 408 
observations was .188. The nR2  then is 76. Comparing it with the chi-square of 43.14 
with 35 degrees of freedom and 95 percent acceptance rate proves that heteroscedasticity 
exists in Model Five. 
 

Table 24: Collinearity Diagnostics for Model Five 
 

Eigenvalue
Condition 

Index

Coeff.  7.941 1.000

1  .012 25.953

2  .011 26.651

3  .010 28.708

4  .009 29.421

5  .008 30.617

6  .007 33.265

7  .001 81.956

 
 

Table 25: Test of Significance for Model Five 
 

R2  F  Durbin‐Watson

.697  123  .785 

 
 

Table 26: ANOVA for Model Five 
 

  Sum of Squares        df   Mean Squared         F 

Regression   1,031,126  7 14,7303  131 

Error  448204.389 400 1,120   

Total  1479331.332 407    
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MODEL SIX WITH HETEROSCEDASTICITY, 
MULTICOLLINEARITY, AUTOCORRELATION 

 
The data for Model Two (original model) were modified to add autocorrelated error, 

multicollinearity, and heteroscedasticity. A new dependent variable was created  that 
included all these regression violations.  

The Pearson correlation (Table 27) shows that X7 and X8 are highly correlated. The 
t values of the coefficients (Table 28) decreased due to higher standard error. The 
collinearity statistics in Table 28 (tolerance and VIF) did increase for X7 and X8, i.e., the 
tolerance values of both variables X7 and X8 went down and VIF values went up. The t-
values in Table 28 vs. Table 7 are much lower due to higher standard errors, and the 
mean squared errors in Table 31 vs. Table 11 went up from .946 to 2,427.   The R2, the F, 
and the Durbin-Watson (Table 30) statistics all decreased. The R2 decreased from .995 in 
Model Two to .105, the F decreased from 12330 to 5.82, and Durbin-Watson decreased 
from 2.285 to .364. Obviously, Durbin-Watson does prove the existence of 
autocorrelation. The effect of autocorrelation, however, discussed previously that the 
regression coefficients are inefficient proved to be true.  

The Eigenvalue of X7 did not change, but the condition indices of both X7 and X8 
went up (Table 29 vs. Table 9). 

 
 

Table 27: Pearson Correlations for Model Six 
 

Y  X1  X2 X3 X4 X5 X6 X7  X8 

Y  1.000       

X1  .042  1.000     

X2  .064  ‐.054  1.000    

X3  .032  .001  .044 1.000    

X4  .119  .040  ‐.003 ‐.071 1.000    

X5  .117  .040  ‐.095 ‐.035 .125 1.000    

X6  .167  .013  ‐.009 ‐.020 .075 ‐.032 1.000    

X7  .197  ‐.072  ‐.047 ‐.063 ‐.019 .128 .023 1.000   

X8  .199  .203  ‐.064 ‐.059 ‐.010 .133 .027 .960  1.000 
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Table 28: Coefficients and Other Statistics for Model Six 
 

         B             t   Tolerance        VIF 

(Constant)  114.45 1.72    

X1  6.34 1.32 .057 17.549 

X2  1.09 1.35 .982 1.018 

X3  .815 1.23 .988 1.012 

X4  .964 1.91 .971 1.030 

X5  .868 2.05 .953 1.050 

X6   1.16 3.20 .991 1.009 

X7  6.40 1.35 .005 214.597 

X8  ‐4.95 ‐1.05 .004 222.455 

 
 

Table 29: Collinearity Diagnostics for Model Six 

 Eigenvalue  Condition Index 
Coeff.  8.937 1.000
X1  0.014 25.536

X2  0.012 27.798

X3  0.011 29.075

X4  0.009 30.855

X5  0.009 31.676

X6  0.008 34.432

X7  0.001 86.951

X8  .000 753.925

 
 

Table 30: Test of Significance for Model Six 
 

R2  F  Durbin‐Watson 

.105  5.82  .364 
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Table 31: ANOVA for Model Six 
 

  Sum of Squares  df Mean Squared 

Regression  113,535  8 14,191 

Error  972,576  399 2,437 

Total  1,086,111  407  

 
Only the White test was used to test for heteroscedasticity. The R2 of regressing the 

squared residuals of 408 observations was .308. The nR2 is then 125. Comparing it with 
chi-square 50 at 36 degrees of freedom and 95 percent acceptance proves that there is 
heteroscedasticity. 

These results indicate that any violation of the regression method results in an 
unacceptable and/or weak model. The results speak for themselves as to how important it 
is to check for violations of regression rules and either remove the violation or do not use 
the equation that gives incorrect results. 
 
 

CONCLUSION 
 

Regression is used for research in biomedicine, economics, and business. The 
research results are used to make many critical medical, economic, and business 
decisions that could have implications on the people, economies, and investments. 
Therefore, failing to properly use the regression results could have many consequences 
that should be avoided, such as hurting or killing people, causing economies to fail, or 
investments to be lost. Sadly, many researchers either ignore the consequences of their 
erroneous analytical methods or are inadequately trained in the proper use of regression 
and, thus unwittingly accept results that could have dire consequences for decision 
makers. This paper illustrates the results of each violation of regression analysis and how 
each violation affects the results, making the results less significant or downright wrong.  

Regression is a useful tool for establishing relationships between or among variables. 
The results are then used to make critical decisions. This paper has shown the effect of 
each rule and why each rule is critical to finding the best outcome for the researcher and 
the people to whom the research may apply.  The proper use of regression can have 
beneficial results for people. However, improper use of regression can have negative or 
even injurious effects on people. Taking the rules of regression lightly will result in 
erroneous outcomes and may cause many human, economic, or investment losses. 
Therefore, a researcher must understand the proper use of the regression and must not 
ignore the rules. Unfortunately, many researchers  don’t do that.  
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